OA-4655 02/15/01

General Game Theory TPZS Solutions of mxn by LP, with a_{ij} = payoffs

For row player

Let x_0 = Player I's security level when he plays strategy $(x_1, ..., x_m)$. This turns out =v, the value of the game.

 $x_i = \text{probability plays row I, for I} = 1,...,m.$

LP:

 $\mathbf{Max} \mathbf{x_0}$

Subject to:

(1)
$$\sum_{i=1}^{m} a_{ij} x_i \ge x_0$$
, for $j = 1, 2, ..., n$.

(2)
$$\sum_{i=1}^{m} x_i = 1$$
.

(3) x_i 0, for all i.

Constraint (1) says expected payoff for I using $(x_1, ..., x_m)$ when II uses j. There are n such j's!

Constraint (2) and (3) makes $(x_1, ..., x_m)$ probabilities

See Washburn for similar setup for y: (Hint: can just use the duel)

 $Min y_0$

Subject to:

(1)
$$\sum_{j=1}^{n} a_{ij} y_j \le y_0$$
, for $i = 1, 2, ..., m$.

(2)
$$\sum_{j=1}^{n} y_j = 1$$
.

(3) y_j 0, for all j.